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Abstract: We present a general stochastic model for hyperspectral imaging data and derive
analytical expressions for the Fisher information matrix for the underlying spectral unmixing
problem. We investigate the linear mixing model as a special case and define a linear unmixing
performance bound by using the Cramer-Rao inequality. As an application, we consider
fluorescence imaging and show how the performance bound provides a spectral resolution limit
that predicts how accurately a pair of spectrally similar fluorescent labels can be spectrally
unmixed. We also report a novel result that shows how the spectral resolution limit can be
overcome by exploiting the phenomenon of anti-Stokes shift fluorescence. In addition, we
investigate how photon statistics, channel addition and channel splitting affect the performance
bound. Finally by using the performance bound as a benchmark, we compare the performance of
the least squares and the maximum likelihood estimators for spectral unmixing. For the imaging
conditions tested here, our analysis shows that both estimators are unbiased and that the standard
deviation of the maximum likelihood estimator is consistently closer to the performance bound
than that of the least squares estimator. The results presented here are based on broad assumptions
regarding the underlying data model and are applicable to hyperspectral data acquired with point
detectors, sCMOS, CCD and EMCCD imaging detectors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Hyperspectral imaging represents a broad class of techniques that capture spectral and spatial
data from the object of interest. Fluorescence microscopy is a powerful tool to study microscopic
objects such as biological cells at high spatial and temporal resolution. Fluorescence imaging
supports the visualization of multiple targets within the object of interest, which is facilitated
by labeling the targets with fluorescent labels that have distinct excitation and emission spectra
(Fig. 1(A)). Consequently, the need for hyperspectral imaging arises in such applications when
the emission spectra of the fluorescent labels significantly overlap (Fig. 1(B)). There exist a
variety of approaches to carry out hyperspectral imaging of a fluorescently labeled microscopic
sample. For instance, hyperspectral imaging can be carried out either with a confocal [1–3]
or a linescanning [4] microscope that has spectral detection capability. Alternately, it can also
be carried out on a widefield microscope by using either narrowband excitation and emission
filters [5–8] or by using an electronically controlled liquid crystal tunable filter [9, 10]. Common
to all these techniques is the underlying hyperspectral data which consists of a sequence of 2D
images acquired at different spectral windows. Thus given the hyperspectral data, the goal is
then to estimate the relative abundance (typically represented in photon counts) of the different
labels at each pixel, and this is referred to as the spectral unmixing problem (Fig. 1(C)).
A common approach to solving the spectral unmixing problem assumes that the number of

labels present in the sample is known. Spectral unmixing approaches that make use of this
strategy include the least squares estimator [11–13], the maximum likelihood estimator [14, 15],
and phasor based approaches [3, 16]. In fluorescence imaging applications, we typically assume
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Fig. 1. Hyperspectral imaging in fluorescence microscopy. Panel A shows a typical
configuration of a fluorescence microscope for multicolor imaging application. The sample
is selectively illuminated at distinct excitation passbands (excitation filter wheel) and the
fluorescence signal is then collected at matched emission passbands (emission filter wheel)
on an imaging detector. Panel B shows the emission spectra of fluorescent labels exhibiting
significant spectral overlap. Panel C illustrates the spectral unmixing problem where given a
hyperspectral data set, i.e. the input image cube, which consists of Nch spectral images each
with Np pixels, the goal is to obtain an estimate of the output image cube that represents the
relative abundance θk of Ns different fluorescent labels at each pixel in the sample. Here Iθ,k
is a random vector with probability density pθ,k that is a function of νθ,k , which describes
the signal at the kth pixel block in the input image cube (see Section 2.2 for details).

a linear mixing model i.e., νθ,k = Aθk , where νθ,k , which describes the signal detected at the kth
pixel in the input image cube (see Fig. 1(C)), is a linear combination of the relative abundance θk
of the different fluorescent labels present at that pixel in the sample. Here A denotes the mixing
matrix that specifies the relative contribution of each fluorescent label in every spectral channel.
The mixing matrix depends on the optical configuration of the hyperspectral microscope and the
spectral properties of the fluorescent dye. The mixing matrix can be computed either theoretically
or experimentally by performing a calibration experiment with single color control samples.
A fundamental question that arises in hyperspectral imaging applications concerns with its

performance limits which deals with the best possible accuracy with which the relative abundance
of the different labels can be determined. Knowledge of the performance limit is important as it
provides a metric to design and optimize a hyperspectral imaging system. Moreover, it also acts
a benchmark to compare the performance of different spectral unmixing algorithms for a given
hyperspectral dataset. In this paper, we present results to compute the performance limits of a
hyperspectral imaging system. We adopt a stochastic framework to model the acquired data and
derive the Fisher information matrix for the spectral unmixing problem. The Fisher information
matrix plays a central role in the theory concerning parameter estimation problems. Through the
Cramer-Rao inequality [17], the inverse Fisher information matrix provides a lower bound to the
variance of any unbiased estimator θ̂ of an unknown parameter θ. This means that the inverse
Fisher information matrix provides the best possible accuracy with which the unknown parameter
can be estimated. Here, for hyperpectral imaging we consider a linear mixing model and define a
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linear unmixing performance (LUP) bound in terms of the inverse Fisher information matrix
for the underlying spectral estimation problem. By definition, the LUP bound provides the best
possible accuracy with which the relative abundance of the different labels can be estimated from
the input image cube.
In the past, several groups have investigated the spectral unmixing problem. In [18,19], the

authors calculated the Fisher information matrix for a deterministic data model that is corrupted
by white noise (Gaussian data model). In [15, 20], the authors derived the Fisher information
matrix for a data model that is corrupted by shot noise (Poisson data model). The present
manuscript provides a broad stochastic framework that is applicable to several different data
models that are typically used to describe data from an imaging detector. Specifically, in addition
to the above data models our results are also applicable for the Poisson + Gaussian data model and
for the stochastic Poisson + Gaussian data model which are typically used to describe imaging
data acquired from sCMOS/CCD cameras and EMCCD cameras, respectively.

The paper is organized as follow. In Section 2 we present the problem formulation, introduce
the different data models, and derive the general expression of the Fisher information matrix
for the spectral unmixing problem. We then investigate conditions under which the Fisher
information matrix is block diagonal as block diagonality has several implications. Next, we
introduce the linear mixing model and derive the Fisher information matrix for the same. We
also derive analytical expressions of the Fisher information matrix that pertain to the different
data models. Further we derive results to address questions regarding the design of hyperspectral
imaging systems such as the addition or splitting of spectral channels and its impact on spectral
unmixing.

In Section 4, we illustrate the results derived in Section 2 by considering different hyperspectral
imaging configurations and fluorescent label pairs. We show that for a pair of regular fluorescent
labels there exists a spectral resolution limit, which predicts how spectrally close the emission
spectra of the two labels can be and still be accurately spectrally resolved. We also show that
by exploiting the phenomenon of anti-Stokes shift fluorescence, the spectral resolution limit
can be overcome and that the emission spectra of the fluorescent labels can be arbitrarily close
to each other. We also illustrate how photon statistics, and the addition or splitting of spectral
channels can affect the performance bound for different data models. In Section 5, we compare
the performance of two spectral unmixing algorithms, namely the least squares estimator and
maximum likelihood estimator, on hyperspectral data. Our results show that for the imaging
conditions tested here, both estimators are unbiased and their performance come close to the
theoretical performance bound with the maximum likelihood estimator being consistently closer
to the performance bound than the least squares estimator.

2. Theory

2.1. Problem formulation

We consider a generic model of a hyperspectral imaging system wherein the sample is illuminated
by a light source and the light that is transmitted or emitted by the sample is collected into
spectral channels and recorded as a sequence of 2D spectral images, which we refer to as the
input image cube. Without loss of generality, we assume that the size of every spectral image
is the same. Let Np denote the total number of pixels in a spectral image and Nch denote the
number of spectral images. We define a pixel block as a sequence of Nch pixels with the same
pixel index, say k for k = 1, . . . , Np, across Nch different spectral images. We assume that the
object of interest contains Ns distinct but spectrally overlapping labels. Due to the presence
of multiple labels, the signal at the k th pixel block can be described as a superposition of the
relative abundance or photons detected from the individual labels that are present at that pixel in
the sample. The spectral unmixing problem can then be stated as follows (Fig. 1(C)) : given
an input image cube which is a Np × Nch dimensional dataset, the goal is to estimate an output
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(or spectrally unmixed) image cube θ which is a Np × Ns dimensional dataset that contains the
photon counts of Ns labels at each pixel in the sample.

2.2. Image formation model

Let Θ ⊆ RNp×Ns be the parameter space and θ ∈ Θ be the unknown parameter vector. For
k = 1, . . . , Np, j = 1, . . . , Nch and C ⊆ R, let Pθ denote a family of probability densities pj

θ,k
on C that is parameterized by θ. The signal detected in the input image cube is modeled as a
sequence of random vectors given by

Iθ = {Iθ,1,Iθ,2, . . . ,Iθ,Np }, θ ∈ Θ, (1)

where Iθ,k := {I j
θ,k

; j = 1, . . . , Nch} for k = 1, . . . , Np , and I j
θ,k

denotes an independent random
variable with probability density pj

θ,k
that models the detected photons at the k th pixel in the j th

spectral image. Here we assume that for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np ,

A1 pj
θ,k

satisfies the following regularity conditions [17]

1.
∂p

j
θ,k
(r)

∂θ exists for r ∈ C and θ ∈ Θ,

2.
∫
C

���� ∂p j
θ,k
(r)

∂θ

���� dr < ∞ for θ ∈ Θ, and

3. the integral
∫
C

1
p
j
θ,k
(r)

∂p
j
θ,k
(r)

∂θk

∂p
j
θ,k
(r)

∂θm
dr exists and is finite for k,m = 1, . . . , Np and θ ∈ Θ.

A2 pj
θ,k

depends on θ through a non-negative function ν j
θ,k

that is differentiable with respect to θ,
i.e., pj

θ,k
≡ pj

ν
j
θ,k
,k
.

As we will see, the term ν
j
θ,k

will typically describe the expected number of detected photons at
the k th pixel in the j th spectral image for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np . We note that
ν
j
θ,k

in turn can be expressed as a function of θ which we wish to estimate.
We note that in our image formationmodel, (Eq. (1)), we have assumed that the photons detected

at each pixel in the image are mutually independent of one another. This assumption is typically
used in statistical modeling of imaging data acquired with point/imaging detectors [21–23]
including fluorescence microscopy data [24].

2.3. Specific data models

In this section we consider specific data models that are used to describe the imaging data under
different experimental conditions. We also discuss how the assumptions made in Section 2.2
regarding the probability density function pj

θ,k
are applicable to these data models and thereby

cover a wide variety of imaging conditions.
Gaussian data model: Here we consider the case where the photons detected at the k th pixel
in the j th spectral image is modeled as a deterministic signal ν j

θ,k
that is corrupted by additive

Gaussian noise. Hence I j
θ,k

is given by I j
θ,k
= ν

j
θ,k
+W j

k
where W j

k
is an independent Gaussian

random variable with mean η j
k
and standard deviation σ j

k
for j = 1, . . . , Nch and k = 1, . . . , Np .

Then the probability density function of I j
θ,k

is given by

pj
θ,k
(z) =

1
√

2πσ j
k

exp

(
−
(z − (ν j

θ,k
+ η

j
k
))2

2(σ j
k
)2

)
, z ∈ R, (2)
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θ ∈ Θ, j = 1, . . . , Nch, k = 1, . . . , Np. For the above equation, it is straightforward to verify
that assumptions A1 and A2 are satisfied. This data model can be used to describe the photon
unlimited imaging scenario where the detected photon can be modeled as a deterministic signal.
Poisson data model: Here we assume that the detected photons at each pixel are Poisson
distributed. Thus we have I j

θ,k
= S j

θ,k
, where S j

θ,k
is an independent Poisson random variable

with mean ν j
θ,k

for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np . The probability density function
of I j

θ,k
is given by

pj
θ,k
(z) =

e−ν
j
θ,k (ν

j
θ,k
)z

z!
, z = 0, 1, 2, . . . , (3)

θ ∈ Θ, j = 1, . . . , Nch k = 1, . . . , Np. It immediately follows that assumptions A1 and A2 are
satisfied. For instance, this specific data model would be applicable for imaging systems such as
a confocal or a multiphoton microscope, where the main source of randomness in the data is
attributed to shot noise statistics [24].
Poisson + Gaussian data model: Here we consider I j

θ,k
to be given by I j

θ,k
= S j

θ,k
+W j

k
, for

θ ∈ Θ, j = 1, . . . , Nch, and k = 1, . . . , Np. Here, S j
θ,k

is a Poisson random variable with mean
ν
j
θ,k

that models the detected photons at the k th pixel in the j th spectral image, and W j
k
is an

independent Gaussian random variable with mean η j
k
and standard deviation σ j

k
that models

the measurement noise at the k th pixel in the j th spectral image, for θ ∈ Θ, j = 1, . . . , Nch and
k = 1, . . . , Np. Here we assume that W j

k
is independent of θ for θ ∈ Θ, j = 1, . . . , Nch and

k = 1, . . . , Np . Then the probability density function of I j
θ,k

is given by [25]

pj
θ,k
(z) =

1
√

2πσ j
k

∞∑
l=0

e−ν
j
θ,k (ν

j
θ,k
)l

l!
e
− 1

2

(
z−l−η

j
k

σ
j
k

)2

, (4)

for z ∈ R, θ ∈ Θ, k = 1, . . . , Np and j = 1, . . . , Nch. From the above expression it immediately
follows that assumption A2 is satisfied. Moreover, it can also be shown that pθ satisfies the
regularity conditions [26] thereby satisfying assumption A1. This data model is applicable to a
fluorescence microscope configuration in which the images are acquired with either a CCD or a
sCMOS camera. Here, in addition to the shot noise statistics the detected signal is also corrupted
by the measurement noise of the detector.
Stochastic-Poisson + Gaussian data model: For completeness, we also consider another
data model where in addition to shot noise statistics and measurement noise of the detector,
the model takes into account stochastic signal amplification, which, for example, occurs in an
electron multiplying CCD camera. Specifically, the detected photons at each pixel that is Poisson
distributed with mean ν j

θ,k
is amplified by a random function M that is independent of θ and the

amplified signal is further corrupted by additive Gaussian noise [27], for θ ∈ Θ, j = 1, . . . , Nch

and k = 1, . . . , Np . M is typically modeled as a branching process [28] with the initial particle
count to be Poisson distributed (with mean ν j

θ,k
) and the individual offspring count to be a zero

modified geometric distribution. For the above data model, the probability density function can
be written as (see [27] for details)

pj
θ,k
(z) =

e−ν
j
θ,k

A
B

√
2πσ j

k

e
−

(
z−η

j
k

√
2σ j

k

)2

+

∞∑
l=1

e
−

(
z−l−η

j
k

√
2σ j

k

)2

×

l−1∑
h=0

((l−1)
h

)
Cl−1−h(Dν j

θ,k
)h+1

(h + 1)!Bh+l+1

]
, z ∈ R, (5)
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where A, B, C and D are constants that are independent of θ for θ ∈ Θ, j = 1, . . . , Nch and
k = 1, . . . , Np. From the above equation we see that assumption A2 is satisfied. Further, it can
be shown that the above equation satisfies assumption A1 [27].

2.4. General expression for the Fisher information matrix

In this section, we derive a general expression of the Fisher information matrix for the output
image cube θ using the image formation model described in Section 2.2. We also investigate
conditions under which the Fisher information matrix I(θ) is diagonal, as diagonality of I(θ)
has several implications. In the present context, since θ is a vector with Np × Ns elements, the
resulting Fisher information matrix will be a (Np × Ns) × (Np × Ns) matrix, which can be very
large. Thus a diagonal I(θ) can render its calculation to be more tractable. In general for an
n-dimensional parameter vector θ = (θ1, . . . , θn) ∈ Θ, if I(θ) is diagonal, then the limit of the
accuracy of θi is independent of other components of θ.
Here, the parameter vector is given by

θ = (θ1,1, θ1,2, . . . , θ1,Ns︸                  ︷︷                  ︸
θT1

, θ2,1, θ2,2 . . . , θ2,Ns︸                 ︷︷                 ︸
θT2

, . . . ,

θNp,1, θNp,2, . . . , θNp,Ns︸                         ︷︷                         ︸
θTNp

),

where θk = (θk,1, θk,2, . . . , θk,Ns )
T denotes the unknown photon counts of the Ns different

labels at the k th pixel in the output image cube for k = 1 . . . , Np. Further we assume that for

j = 1, . . . , Nch and k , m and k,m = 1, . . . , Np,
∂ν

j
θ,k

∂θm
= 0, θ ∈ Θ where 0 denotes a 1 × Ns

row vector with all elements equal to zero. This relies on the prior assumption of spatial
independence between the detected photons in different pixels (section 2.2). Its relevance will
become evident in the next section where we consider an explicit relationship between νθ,k and
the components of θk for the linear mixing model. As we will see, the above assumption results
in the Fisher information matrix being block diagonal, where the diagonal entries pertain to the
Fisher information matrix of θk for k = 1, . . . , Np .
In the following theorem, we state two results. The first result is a general expression for

the Fisher information matrix pertaining to the input image cube Iθ , which is analogous to
a previously published result [27, 29]. The second result investigates a condition for block
diagonality of the Fisher information matrix.

Theorem 2.1 Let Θ ∈ RNp×Ns denote the parameter space. For θ ∈ Θ, let Iθ = {I j
θ,k
| k =

1, . . . , Np, j = 1, . . . , Nch} denote the input image cube that is defined in eq. (1). Assume that
conditions A1–A2 are satisfied (see Section 2.2).
1. For θ ∈ Θ, the Fisher information matrix for the output image cube θ is given by

I(θ) =
Np∑
k=1

Nch∑
j=1

α
j
θ,k

(
∂ν

j
θ,k

∂θ

)T
∂ν

j
θ,k

∂θ
, θ ∈ Θ,

where for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np

α
j
θ,k

:= E

(
∂ ln(pj

θ,k
(z j

k
))

∂ν
j
θ,k

)2 (6)

and z j
k
denotes a realization of I j

θ,k
.
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2. Assume that for k , m, k,m = 1, . . . , Np and j = 1, . . . , Nch,
∂ν

j
θ,k

∂θm
= 0, θ ∈ Θ. Then the

Fisher information matrix given in result 1 of this Theorem can be written as

I(θ) = Diag
[
I1(θ), I2(θ), . . . , INp (θ)

]
, θ ∈ Θ,

where for θ ∈ Θ and k = 1, . . . , Np

Ik(θ) :=
Nch∑
j=1

α
j
θ,k

(
∂ν

j
θ,k

∂θk

)T
∂ν

j
θ,k

∂θk
. (7)

Proof:
1. See [27, 29] for proof.

2. Substituting
∂ν

j
θ,k

∂θm
= 0 for θ ∈ Θ in result 1 of this Theorem and simplifying the result follows.

•

From result 2 of the above theorem we see that the block diagonal representation reduces
the computational complexity to calculate the Fisher information matrix. Specifically, for
k = 1, . . . , Np the k th block matrix Ik(θ) is a Ns × Ns square matrix, which is relatively
straightforward to compute.

2.5. Non negativity constraint on θ

The results of the above theorem pertain to the unconstrained Fisher information matrix where
the parameter space Θ is a subset of RNp×Ns . This implies that the unknown parameter vector
θ ∈ Θ can take positive and negative values. In many spectral imaging applications including
fluorescence microscopy, the unknown parameter vector is constrained to takes non-negative
values. We note that the results of Theorem 2.1 will also hold for a parameter estimation
problem with an inequality constraint on θ, which is of the form Gθ ≥ 0, θ ∈ Θ where
Gθ : RNp×Ns → RNp×Ns is a vector valued function that is continuously differentiable with
respect to θ for θ ∈ Θ (see [30]).

2.6. Linear mixing model and the mixing matrix

In the previous theorem we derived a general expression of the Fisher information matrix for the
output image cube θ pertaining to a general hyperspectral imaging system. Here we next consider
the case when the non negative function ν j

θ,k
is a linear superposition of the components of the

unknown parameter vector θ for j = 1, . . . , Nch and k = 1, . . . , Np. For θ ∈ Θ, define νθ,k :=
[ν1
θ,k
, ν2
θ,k
, . . . , νNch

θ,k
]T , k = 1, . . . , Np . Then for the linear mixing model we have

νθ,k := Aθk, k = 1, . . . , Np, θ ∈ Θ, (8)

where A is a Nch × Ns dimensional matrix with elements {ai j ; i = 1, . . . , Nch; j = 1, . . . , Ns}

known as the mixing matrix and θk = [θk,1, θk,2, . . . , θk,Ns ]
T , k = 1, . . . , Np . The columns of A

pertain to the different labels, the rows of A pertain to the different spectral channels, and the
element ai j denotes the contribution of the j th label in the ith channel. As we will see, the mixing
matrix will play an important role in governing the behavior of the Fisher information matrix for
the linear mixing model. We note that the linear mixing model is used to model hyperspectral
data in many applications including fluorescence microscopy.

In the following Theorem we derive the Fisher information matrix for the linear mixing model.
We also consider a special case where νθ,k = θk for θ ∈ Θ, k = 1, . . . , Np and Nch = Ns. This
special case pertains to an ideal imaging configuration where the signal from a given label can be
collected without being corrupted by signal from other labels at every pixel block in the input
image cube (see Section 2.7).
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Theorem 2.2 For θ ∈ Θ, let I(θ) denote the Fisher information matrix of the output image cube
θ that is given in Theorem 2.1.
1. For θ ∈ Θ and k = 1, . . . , Np let νθ,k be given by Eq. (8). Then the Fisher information matrix
of the output image cube θ for the linear mixing model is given by

I(θ) = Diag
[
ATG1(θ)A, ATG2(θ)A, . . . , ATGNp (θ)A

]
, θ ∈ Θ,

where A denotes the mixing matrix,

Gk(θ) := Diag
(
α1
θ,k, α

2
θ,k, · · · , α

Nch

θ,k

)
, (9)

and α j
θ,k

is given by Eq. (6) for j = 1, . . . , Nch , k = 1, . . . , Np and θ ∈ Θ.
2. For θ ∈ Θ and k = 1, . . . , Np , let νθ,k = θk . Then the Fisher information matrix for the output
image cube θ is given by

Ibc(θ) = Diag
[
G1(θ),G2(θ), . . . ,GNp (θ)

]
, θ ∈ Θ,

where Gk(θ) is given by Eq. (9) for θ ∈ Θ and k = 1, . . . , Np .

Proof:
1. By definition of νθk , we have for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np ,

ν
j
θ,k
=

Ns∑
l=1

ajlθk,l = aj1θk,1 + aj2θk,2 + · · · + ajNs θk,Ns . (10)

From the above equation, we have for k , m and k,m = 1, . . . , Np ,

∂ν
j
θ,k

∂θm
=

[
∂ν

j
θ,k

∂θm,1

∂ν
j
θ,k

∂θm,2
· · ·

∂ν
j
θ,k

∂θm,Ns

]
= 0, θ ∈ Θ,

where j = 1, . . . , Nch , and 0 denotes a 1 × Ns vector with all elements equal to zero. Hence the
Fisher information matrix will be given by result 2 of Theorem 2.1. To prove the desired result, it
is sufficient if we show that Ik(θ) = ATGk(θ)A, where Ik(θ) is defined by Eq. (7). Substituting
eq. 10 in Eq. (7), we have

Ik(θ) =
Nch∑
j=1

α
j
θ,k

(
∂ν

j
θ,k

∂θk

)T
∂ν

j
θ,k

∂θk
=

Nch∑
j=1

α
j
θ,k

©«

aj1

aj2
...

ajNs

ª®®®®®®®¬
(
aj1 aj2 . . . ajNs

)

=

Nch∑
j=1

α
j
θ,k

©«

a2
j1 aj1aj2 . . . aj1ajNs

aj2aj1 a2
j2 . . . aj2ajNs

...
... . . .

...

ajNs aj1 ajNs aj2 . . . a2
jNs

ª®®®®®®®¬
= ATGk(θ)A, θ ∈ Θ, k = 1, . . . , Np .

2. Substituting νθ,k = θk for θ ∈ Θ and k = 1, . . . , Np in Eq. (7) and simplifying the result
follows. •

From result 1 of the above theorem we see that the Fisher information matrix for the linear
mixing model depends on the mixing matrix A and the term α

j
θ,k

which is given by Eq. (6).
Note that the analytical expression of α j

θ,k
depends on the probability density function of the data

model that describes the input image cube. In the next Corollary we derive analytical expression
for three of the data models that we discussed in section 2.3.
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2.7. Best case imaging scenario

From result 2 of Theorem 2.2, the Fisher information matrix Ibc(θ) can be considered as a special
case of result 1 with the mixing matrix being equal to a Ns × Ns identity matrix. As we will see
here, this pertains to the best case imaging scenario in that it provides the best possible limit to
the accuracy with which photons from a label can be estimated in the output image cube. To
illustrate this, consider a simple fluorescence microscope imaging configuration with 2 spectral
channels (Nch = 2) and two fluorescent labels (Ns = 2). Substituting this in Eq. (8), we have for
θ ∈ Θ,

ν1
θ,k = a11θk,1 + a12θk,2, ν2

θ,k = a21θk,1 + a22θk,2, k = 1, . . . , Np

where ν1
θ,k

and ν2
θ,k

denote the expected number of detected photons at the k th pixel in the input
image cube pertaining to spectral channels 1 and 2, respectively. A logical choice in designing
the pass bands of the spectral channels would be to choose a bandwidth that captures the peak of
the emission spectra of the fluorescent labels. Then for spectral channel 1, θk,1 and θk,2, which
denote the expected number of detected photons from labels 1 and 2 at the k th pixel, can be
considered as the signal of interest and background, respectively. Similarly, for spectral channel
2, θk,2 and θk,1 can be considered as the signal of interest and background, respectively. Hence
the spectral unmixing problem becomes equivalent to estimating the signal of interest in each
spectral channel in the presence of a background, i.e. the spectral bleed through from the other
label(s). Thus the best case scenario can be realized when there is no background contribution,
i.e. a12 = a21 = 0 (no spectral bleed through) and all of the signal from the fluorescent labels are
captured in their respective spectral channels, i.e. a11 = a22 = 1. This would reduce the mixing
matrix to an identity matrix. We note that a hyperspectral imaging system with A = 1 may not be
practically realizable, for example, if there is significant spectral overlap between the fluorescent
labels. Nevertheless, this provides an important benchmark to assess the effect of spectral overlap
on spectral unmixing accuracy.

Corollary 2.1 For θ ∈ Θ, let I(θ) denote the Fisher information matrix given by result 1 of
Theorem 2.2, and for k = 1, . . . , Np let νθ,k be given by Eq. (8).
1. Gaussian data model. For θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np , let pj

θ,k
be given by Eq.

(2). Then for θ ∈ Θ

I(θ) = Diag
[
ATG

g
1 A, ATG

g
2 A, . . . , ATG

g
Np

A
]
,

where for k = 1, . . . , Np and θ ∈ Θ

G
g
k

:= Diag

(
1
(σ1

k
)2
,

1
(σ2

k
)2
, . . . ,

1
(σNch

k
)2

)
and σ j

k
denotes the standard deviation of Gaussian noise for j = 1, . . . , Nch and k = 1, . . . , Np .

2. Poisson data model. For θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np, let pj
θ,k

be given by Eq.
(3). Then for θ ∈ Θ

I(θ) = Diag
[
ATG

p
1 (θ)A, ATG

p
2 (θ)A, . . . , ATG

p
Np
(θ)A

]
,

where for k = 1, . . . , Np and θ ∈ Θ

G
p
k
(θ) := Diag

(
1
ν1
θ,k

,
1
ν2
θ,k

, . . . ,
1

νNch

θ,k

)
.
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3. Poisson + Gaussian data model. For θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np, let pj
θ,k

be
given by Eq. (4). Then

I(θ) = Diag
[
ATG

pg
1 (θ)A, ATG

pg
2 (θ)A, . . . , ATG

pg
Np
(θ)A

]
θ ∈ Θ,

where for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np

G
pg
k
(θ) := Diag

(
Γ

1
θ,k, Γ

2
θ,k, . . . , Γ

Nch

θ,k

)
,

Γ
j
θ,k

:=
∫
R

(ζ
j
θ,k
(z))2

pj
θ,k
(z)

dz − 1,

pj
θ,k

is given by Eq. (4) and

ζ
j
θ,k
(z) :=

∞∑
l=1

[ν
j
θ,k
]l−1e−ν

j
θ,k

(l − 1)!
1

√
2πσ j

k

e
− 1

2

(
z−l−η

j
k

σ
j
k

)2

, z ∈ R.

Proof: 1. Substituting for pj
θ,k

(Eq. (2)) in Eq. (6), we have

α
j
θ,k
= E


(
∂ ln(pj

θ,k
(z j

k
))

∂ν
j
θ,k

)2
=

1
(σ

j
k
)4

E[(z j
k
)2 − 2z j

k
(η

j
k
+ ν

j
θ,k
) + (η

j
k
+ ν

j
θ,k
)2] =

1
(σ

j
k
)2
,

where θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np. In deriving the above result we have
made use of the fact that the random variables I j

θ,k
are mutually independent of each other,

E[(z j
k
)2] = Var(z j

k
)+ (E[z j

k
])2 and E[z j

k
] = η

j
k
+ν

j
θ,k

for θ ∈ Θ, k = 1, . . . , Np and j = 1, . . . , Nch .
Substituting the above result in Eq. (9) the result follows.
2. For an independent Poisson random variable with mean ν j

θ,k
, where θ ∈ Θ, j = 1, . . . , Nch

and k = 1, . . . , Np , we have

α
j
θ,k
= E


(
∂ ln(pj

θ,k
(z j

k
))

∂ν
j
θ,k

)2 = E

(

z j
k

ν
j
θ,k

− 1

)2 =
E[(z j

k
)2]

(ν
j
θ,k
)2
− 1 =

1
ν
j
θ,k

,

where θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np . Substituting the above expression in Eq. (9) the
result follows.
3. Substituting Eq. (4) in Eq. (6) and simplifying (see [25] for details), we have

α
j
θ,k
= Γ

j
θ,k
=

∫
R

(ζ
j
θ,k
(z))2

pj
θ,k
(z)

dz − 1,

for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np. Substituting the above expression in Eq. (9) the
result follows. •

From the above Corollary we see that the Fisher information matrix for the Gaussian data
model is independent of θ and depends only on the mixing matrix A and the variance (σ j

k
)2

of the Gaussian noise for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np. This is in contrast to the
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Poisson and the Poisson + Gaussian data models where the Fisher information matrix depends on
θ through ν j

θ,k
that describes the expected number of detected photons at the k th pixel in the j th

channel for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np. An implication of this result is that if the
underlying data model is indeed Gaussian, then the Fisher information matrix of the output image
cube is solely governed by the optical configuration of the imaging system and is independent of
the photon budget. We note that the above result for the Gaussian data model is consistent with a
previously published result [19].
From result 2 of Corollary 2.1, we see that the Fisher information matrix for the Poisson

data model shows an inverse dependence on the expected photon count. Consequently, the
inverse Fisher information matrix will show a linear dependence on the expected photon count.
According to the Cramer-Rao inequality, for any unbiased estimator θ̂ of an n-dimensional vector
parameter θ, we have Var(θ̂i) ≥ [I−1(θ)]ii , where [I−1(θ)]ii denotes the Cramer-Rao lower bound
of θ̂i for, i = 1, ..., n. An implication of this result is that the Cramer-Rao lower bound of the
photon count estimate for the labels will increase with increasing value of the expected photon
count. Since the square root of Cramer-Rao lower bound provides a lower bound to the standard
deviation of the photon count estimate, we will use the ratio of the square root of the Cramer-Rao
lower bound of photon count to the expected photon count as a performance measure for the
spectral unmixing problem (See Definition 4.2 in Results section).

2.8. Channel addition

An important question that arises in the design of hyperspectral imaging systems concerns the
number of spectral channels that is required to capture the signal from the label of interest in
order achieve optimal spectral unmixing. Specifically, given an input image cube with Nch

spectral channels the question arises as to whether adding an extra spectral channel will provide
any benefit for spectral unmixing. In the next Corollary we show that for the linear mixing
model with Ns labels, the Fisher information matrix for the output image cube pertaining to
a Nch + 1 channel hyperspectral imaging system is greater than that of the Fisher information
matrix pertaining to a Nch channel hyperspectral imaging system.

Corollary 2.2 For θ ∈ Θ, let I(θ | Nch) denote the Fisher information matrix given by result 1
of Theorem 2.2 pertaining to an input image cube with Nch spectral channels. Then for θ ∈ Θ,
I(θ | Nch + 1) − I(θ | Nch) is positive semi-definite for θ ∈ Θ.

Proof: By definition of I(θ | Nch), it is sufficient to show that Ik(θ | Nch + 1) ≥ Ik(θ | Nch) for
θ ∈ Θ and k = 1, . . . , Np , where Ik(θ | Nch) = ATGk(θ)A for θ ∈ Θ, A is a Nch × Ns matrix and
Gk(θ) is a Nch × Nch diagonal matrix, for k = 1, . . . , Np that is given by Eq. (9). In the case of a
Nch + 1 channel hyperspectral imaging system, we have for θ ∈ Θ and k = 1, . . . , Np

Ik(θ | Nch + 1) = ÃT G̃k(θ)Ã, (11)

where Ã is (Nch + 1) × Ns matrix and G̃k(θ) is (Nch + 1) × (Nch + 1) diagonal matrix, for
k = 1, . . . , Np. Since the number of labels is the same, we rearrange the mixing matrix Ã such
that the addition of an extra spectral channel results in the addition of a row at the bottom of this

matrix. Hence Ã can be written as Ã = ©«
A

R
ª®¬ where R is a 1 × Ns vector that pertains to the

(Nch + 1)th channel. Similarly, the matrix G̃k(θ) can be written as

G̃k(θ) =
©«
Gk(θ) 0

0T αNch+1
θ,k

ª®¬ , θ ∈ Θ, k = 1, . . . , Np,
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where 0 denotes a Nch × 1 zero vector and αNch+1
θ,k

is a scalar term given by Eq. (6) and pertains
to the (Nch + 1)th diagonal entry of G̃k(θ). Substituting the above expressions of G̃k(θ) and Ã in
Eq. (11), we have

Ik(θ | Nch + 1) = (AT RT )
©«
Gk(θ) 0

0T αNch+1
θ,k

ª®¬ ©«
A

R
ª®¬

= (AT RT )
©«
Gk(θ)A

αNch+1
θ,k

R
ª®¬ = Ik(θ | Nch) + α

Nch+1
θ,k

RTR,

where θ ∈ Θ and k = 1, . . . , Np. By definition, αNch+1
θ,k

≥ 0 for θ, ∈ Θ and k = 1, . . . , Np and
RTR ≥ 0. From this the result follows. •

In deriving the above result, we made no specific assumptions about the underlying data model
that describes the input image cube. Therefore the above result is applicable to a wide variety
of imaging configurations for the linear mixing model. An immediate implication of the above
result is that the limit of the accuracy of photon count for a given label improves by adding extra
spectral channels to detect the signal from that label.

2.9. Channel splitting and photon partitioning

In the previous section, we saw how adding an extra channel to a hyperspectral imaging system
can improve the Fisher information matrix. In many practical situations, channel addition may
not be feasible since the overall spectral bandwidth to collect the signal from a given label cannot
be increased. In such cases, a question then arises as to whether spectral subsampling within the
passband would be beneficial. Specifically, if we have a hyperspectral imaging system with Nch

spectral channels and if one of the spectral channels are split into two channels of smaller spectral
bandwidth, then under what conditions is channel splitting beneficial? In the next corollary we
state a result that shows channel splitting is beneficial for the Poisson data model.

Corollary 2.3 For θ ∈ Θ, let I(θ | Nch) denote that Fisher information matrix given by result 2 of
Theorem 2.1 where Nch denotes the number of spectral channels. Assume that for j = 1, . . . , Nch

there exists a partition function 0 < γ
j
θ < 1 with ∂γ

j
θ

∂θ , 0 for θ ∈ Θ and j = 1, . . . , Nch such that
the addition of an extra channel splits the expected photon counts into two fractions given by
γ
j
θν

j
θ,k

and (1 − γ j
θ )ν

j
θ,k

, where ν j
θ,k

denotes the expected photon count of the k th pixel in the
j th spectral image, for θ ∈ Θ, j = 1, . . . , Nch and k = 1, . . . , Np . If we consider a Poisson data
model, then

I(θ | Nch + 1) > I(θ | Nch), θ ∈ Θ.

Proof: See ref. [20] for proof. •

Note that unlike Corollary 2.2 which used the analytical expression for the Fisher information
matrix given in Theorem 2.2, the above corollary used a more general expression for the Fisher
information matrix given by result 2 of Theorem 2.1. The reason for this is due to the dependence
of θ on the partition function γ j

θ for j = 1, . . . , Nch and θ ∈ Θ. As we will show in Section 4.5,
the above result is only true for the Poisson data model. In fact for the Poisson + Gaussian data
model we will show that the limit of the accuracy of the photon count exhibits complex behavior
with channel splitting and eventually deteriorates when increasing the number of partitioned
channels.
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3. Methods

3.1. Computing the Fisher information matrix and the mixing matrix A

The Fisher information matrix was calculated using the FandPLimitTool [31] which is aMATLAB
based software package that contains an extensive suite of tools to calculate the Fisher information
matrix for a wide variety of parameter estimation problems in fluorescence microscopy. For the
linear spectral unmixing problem, the Fisher information matrix depends on the mixing matrix
A which needs to be computed for illustrating the results. We note that in a practical situation,
A can be experimentally determined by imaging single color control samples under identical
imaging conditions to that of the sample that contains Ns different labels. Here we present a
simplified approach to theoretically calculate A by using relevant reference data such as the the
excitation and emission spectra of fluorescent labels, the spectral emissivity of the fluorescent
light source and passbands of the excitation and emission filters. The elements of the mixing
matrix A can be written as

ai j = ξex(i, j)ξem(i, j), i = 1, . . . , Nch, j = 1, . . . , Ns,

where for i = 1, . . . , Nch and j = 1, . . . , Ns

ξex(i, j) :=
b(i, j)

max(b(1, j), b(2, j), . . . , b(Nch, j))
,

b(i, j) :=
∫ λexi,max

λexi,min

tj,ex(λ)ELS(λ)dλ,

ξem(i, j) :=
∫ λemi,max

λemi,min

tj,em(λ)topt (λ)tcam(λ)dλ.

In the above equations, [λexi,min, λ
ex
i.max] and [λ

em
i,min, λ

em
i.max] denote the excitation and emission

passbands, respectively, corresponding to the ith channel, tj,ex and tj,em denote the fluorescence
excitation and emission spectra, respectively, of the j th dye, j = 1, . . . , Ns, ELS denotes the
spectral emissivity of the fluorescent light source, topt denotes the spectral transmitivity of the
optical components (e.g., objective and tube lens) in the emission light path, and tcam denotes
the spectral sensitivity of the detector. For simplicity, we set topt (λ) = 1 and tcam(λ) = 1, and
also assume that the transmission efficiency of the excitation and emission filters is equal to 1 in
the passband and is equal to zero outside the passband. The excitation and emission spectra of
the fluorescent labels and the spectral emissivity of the fluorescent light source were obtained
from the Pubspectra database [32] and were modified such that their sum equals 1. The above
integrals were numerically evaluated using the Trapezoidal rule.

3.2. Hyperspectral data simulation

To simulate hyperspectral data, we use the above approach to compute the mixing matrix A
and use Eq. (8) to compute the expected photon counts of the fluorescent labels νθ,k at the kth
pixel in the input image cube. For the Poisson + Gaussian data model, we first create a Poisson
realization of νθ,k and then add Gaussian noise with mean η j

k
= 0 e−/pixel and standard deviation

σ
j
w,k
= 8 e−/pixel to the Poisson data.

4. Results

In this section, we illustrate the results obtained in the previous section concerning the linear
mixing model. We first define a few entities that we will use throughout this section.
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Definition 4.1 For θ ∈ Θ, i = 1, . . . , Ns and k = 1, . . . , Np , theLinear Unmixing Performance
(LUP) bound for the ith label at the k th pixel in the output image cube is defined as δk,i =√
[I−1
k
(θ)]ii , θ ∈ Θ, and the LUP bound for the best case scenario is defined as δbc

k,i
=√

[G−1
k
(θ)]ii , where Ik(θ) = ATGk(θ)A, A denotes the mixing matrix and Gk(θ) is given by 9, for

θ ∈ Θ and k = 1, . . . , Np .

Definition 4.2 For θ ∈ Θ, i = 1, . . . , Ns and k = 1, . . . , Np, the normalized LUP (nLUP)
bound for the ith label at the k th pixel in the output image cube is defined as δk, i

θk, i
, and the nLUP

bound for the best case scenario is defined as
δbc
k, i

θk, i
, where δk,i and δbck,i are defined in Definition

4.1.

4.1. Spectral resolution for a pair of fluorophores

An important question that arises in hyperspectral imaging applications concerns with how
accurately two spectrally overlapping fluorescent labels can be discerned from the acquired data.
Here we address this problem by considering a pair of fluorescent labels whose emission maxima
are separated by a distance ds (see Fig. 2(A)). We assume an imaging configuration where the
sample is illuminated (sequentially or simultaneously) to excite the labels such that the excitation
passband for a given label overlaps with its corresponding excitation maxima. The fluorescence
signal is then detected (sequentially or simultaneously) in two distinct spectral channels, where
the emission passband of each spectral channel covers the corresponding emission maxima of
a particular label. We then ask the question how decreasing the spectral distance ds affects
the spectral resolution of the two fluorophores. For the current discussion, we consider the
fluorescent labels with traditional Stokes shift fluorescence signal [33] where the peak of the
emission spectra for the label occurs at a longer wavelength (lower energy) than the peak of its
corresponding excitation spectra.
Figures 2(B) and 2(C) show the nLUP bounds for labels 1 and 2, respectively, for different

data models as a function of the spectral distance ds. The figures also show the nLUP bounds
for labels 1 and 2 for the best case scenario, which pertains to the ideal imaging configuration
wherein the signal collected from a given label is not corrupted by photons from other labels
present in the sample. Here, to simulate the decrease in ds , we shift the excitation and emission
spectra of label 2 and also the corresponding passbands of the excitation and emission filters
towards label 1 while leaving the excitation and emission spectra for label 1 unchanged.

By definition, the nLUP bound is a ratio of the LUP bound to the expected photon count for a
given label (Definition 4.2). A large numerical value of the nLUP bound predicts a relatively
high level of error in estimating the photon count at a given pixel while a small numerical value
predicts a relatively low level of error in estimating the photon count at a given pixel. For
example, if the nLUP bound = 0.01, then by definition we have the LUP bound to be equal to 0.01
× expected photon count. This implies that the best possible accuracy with which the photon
count is estimated can be no smaller than 1% of the true photon count value. On the other hand,
if the nLUP bound = 1, then this implies that the possible accuracy with which the photon count
is estimated can be no smaller than 100 % of the true photon count value.

From the figures we see that when the labels are spectrally well separated the nLUP bound is
numerically close to the nLUP bound for the best case scenario. This is expected since there is
no spectral crosstalk between the excitation or emission spectra of the two labels. Consistent
with this, we see that the mixing matrix A is diagonal (see Fig. 2(C)). As the spectral distance
decreases, the excitation/emission spectra of the labels start to overlap and the mixing matrix is
no longer diagonal. Consequently, the numerical value of the nLUP bound becomes bigger and
starts to deviate from the nLUP bound for the best case scenario. When the spectral distance
further decreases, the nLUP bound continues to deteriorate and we see that the numerical values
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of the off-diagonal terms of the A matrix, which accounts for the spectral cross talk between
the labels, is comparable to the diagonal terms. Note that the nLUP bound for the Poisson +
Gaussian data model is consistently higher than that for the Poisson data model, since in the
former model the presence of additive Gaussian noise corrupts the detected photon counts at
each pixel in the input image cube which leads to higher uncertainty in estimating the photon
counts at a given pixel.
We note that the difference between the nLUP bound and the nLUP bound for the best case

scenario is referred to as the multiplexing disadvantage [15] which accounts for the deterioration
in the limit of the accuracy of photon count from the best case scenario when we consider the
effect of detecting unwanted photons from other labels present in the sample. As we will see
in rest of this section, the nLUP bound for the best case scenario will provide an important
benchmark for studying the performance limits of hyperspectral imaging systems. In our present
example the shape of the emission spectra for labels 1 and 2 are dissimilar, and therefore even for
a very small spectral distance of 1 nm, the nLUP bound remains finite for both labels.

4.2. Improving the spectral resolution by using anti-Stokes shift fluorescence

In the previous section we saw that with traditional fluorescent labels which exhibit Stokes shift
fluorescence, there is a limit to how spectrally close the two labels can be and still be accurately
spectrally unmixed. In this section, we show that by replacing one of the labels with a fluorophore
that exhibits anti-Stokes shift fluorescence we can overcome the spectral resolution limit. Figure
3 shows the excitation and emission spectra for such a pair of labels, where label 1 is a traditional
fluorescent label as in Fig. 2 and label 2 exhibits anti-Stokes shift fluorescence [33] wherein the
peak of its emission spectra occurs at a shorter wavelength (higher energy) relative to the peak
of its excitation spectra. It should be pointed out that at present there is significant interest in
developing such probes especially for biological applications [34,36]. For example, upconverting
nanoparticles are one such a class of fluorescent labels that typically exhibit strong absorption in
the near infrared wavelength range (700 - 1000 nm) and emit fluorescence signal in the visible
range (400 - 650 nm) [35, 36].
In Fig. 3 we have simulated the excitation and emission spectra for a hypothetical label that

exhibits anti-Stokes shift fluorescence. We consider an imaging configuration where the labels are
sequentially illuminated over two excitation passbands that cover their corresponding excitation
maxima, and the fluorescence signal is sequentially collected over emission passbands that cover
their emission maximas. To simulate the decrease in spectral distance, we shift the excitation and
emission spectra of label 2 and their corresponding excitation and emission passbands towards
label 1, and keep the excitation and emission spectra of label 1 fixed.

Figures 3(B) and 3(C) show the nLUP bounds for labels 1 and 2, respectively, pertaining to the
Poisson and Poisson + Gaussian data models. The figures also show the nLUP bound for the
best case scenario pertaining to the Poisson data model. From the figures we see that the nLUP
bound is almost constant for all values of the spectral distance. Specifically, the mixing matrix A
remains diagonal irrespective of the spectral distance of separation between the two labels. This
can be attributed to anti-Stokes shift fluorescence which significantly eliminates the overlap of
the excitation spectra between labels 1 and 2 when the spectral distance decreases. Therefore for
the above imaging configuration there is very limited spectral cross talk between the two labels
and consequently the nLUP bound remains constant and is consistently close to the nLUP bound
for the best case scenario. Note that similar to Fig. 2, the nLUP bound for the Poisson+Gaussian
data model is consistently higher than the nLUP bound for the Poisson data model.

4.3. Effect of photon count

We next investigate how changing the expected photon count impacts the linear unmixing
performance bound. Here, we consider two fluorescent labels Cy3 and Cy3.5 which have

                                                                      Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3394 



Fig. 2. The effect of changing the spectral distance on spectral resolution. Panel A shows the
normalized excitation (red lines) and emission spectra (blue lines) of two fluorescent labels
that are spectrally separated by a distance ds . The panel also shows the spectral emissivity of
a metal hallide broadband light source that is used to excite the two labels (black dotted line).
Here, for both labels we consider the traditional Stokes shift for their fluorescence emission
spectra. Panels B and C show the nLUP bound for labels 1 and 2 at a pixel, respectively,
for the Poisson and the Poisson + Gaussian data models and also for the best case scenario
pertaining to the Poisson data model. Panel C also shows the mixing matrix pertaining to
different values of ds . In panels B and C, the expected photon count for both labels is set to
be 500 photons per pixel and for the Poisson + Gaussian data model we consider the mean
and standard deviation of the Gaussian noise to be 0 e−/pixel and 8 e−/pixel, respectively.

significant overlapping excitation and emission spectra (Figs. 4(A) and 4(B)). We assume an
imaging configuration in which the fluorophores are sequentially excited at distinct excitation
passbands and the corresponding fluorescence signal is then sequentially collected at the indicated
emission passbands.

Figures 4(C) and 4(D) show the nLUP bound for the Poisson and the Poisson + Gaussian data
models along with the nLUP bound for the best case scenario pertaining to the Poisson data
model. We see that as the expected photon count /pixel increases, the numerical value of the
nLUP bound becomes smaller and approaches the nLUP bound for the best case scenario. Note
that the nLUP bound for the Poisson + Gaussian data model is consistently higher than that of
the Poisson data model, and the difference starts to diminish as the expected photon count per
pixel increases. Taken together, these results imply that increasing the photon/light budget would
result in an overall improvement in the performance bound.

                                                                      Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3395 



Fig. 3. Improving the spectral resolution by using anti-Stokes shift fluorescences. Panel
A shows the normalized excitation (red lines) and emission spectra (blue lines) of two
fluorescent labels that are spectrally separated by a distance ds . The panel also shows
the spectral emissivity of a metal hallide broadband light source that is used to excite the
two labels (black dotted line). Here, label 1 is the same as that shown in Fig. 2, while
label 2 is a fluorophore with anti-Stokes shift fluorescence emission, where the peak of its
emission spectra is at a shorter wavelength (higher energy) than the peak of its excitation
spectra. Panels B and C show the nLUP bounds for labels 1 and 2, respectively, at a pixel
for the Poisson and the Poisson + Gaussian data models and also for the best case scenario
pertaining to the Poisson data model. Panel C also shows the mixing matrix pertaining to
different values of ds . The numerical values used to generate the above plots are identical to
those used in Fig. 2.

4.4. Channel addition

We next investigate the effect of adding extra spectral channels to collect the signal from a label
on the spectral unmixing accuracy. Here again we consider Cy3 and Cy3.5 labels and calculate
the LUP bound that is defined in Definition 4.1. Unlike the results given in Figs. 2–4, here we
compute the LUP bound since the expected photon count is fixed for the fluorescent labels. We
assume an imaging configuration such that the fluorescence signal from each label is sequentially
collected in one or more spectral channels (i.e. different emission passbands) by repetitively
exciting the sample at the same excitation passband. For example, for the Cy3.5 fluorophore,
consider a 6 channel configuration with emission passbands in the range of 590 - 610 nm, 610 -
630 nm, 630 - 650 nm, 650 - 670 nm, 670 - 690 nm and 690 - 710 nm (see Fig. 5(A)). Here the
sample will be sequentially excited 6 times at the excitation passband of 542 - 582 nm and each
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Fig. 4. Effect of photon count on the nLUP bound. Panels A and B show the normalized
excitation (red lines) and emission (blue lines) spectra for Cy3.5 and Cy3 fluorescent labels,
respectively, along with the spectral emissivity of a metal hallide light source (black dotted
line). The panels also show the corresponding excitation and emission passbands for each
fluorescent label. Panels C and D show the behavior of the nLUP bound for Cy3.5 and Cy3,
respectively, at a single pixel as a function of the expected photon count for the Poisson
and the Poisson + Gaussian data models. As reference, the panel also shows the nLUP
bound for the best case scenario pertaining to the Poisson data model. Here, we assume the
expected photon count to be the same for both fluorophores and for the Poisson + Gaussian
data model, the mean and standard deviation of the readout noise is set to be 0 e−/pixel and
8e−/pixel, respectively.

time the fluorescence signal will be collected in a different emission passband pertaining to Cy3.5.
Note that in this configuration the number of detected photons from the fluorescent label will
increase with increasing number of channels assuming that there is negligible photobleaching
effect which typically diminishes the fluorescence intensity of the label with repeated excitation.
We note that such an imaging configuration has been implemented, for example, using specialized
emission filters that are placed before the imaging detector in the light path in which the passband
of the filter can be modified either electronically [9] or optomechanically by changing the relative
angle of incidence of light on the emission filter [7].
Figures 5(C) and 5(D) show the LUP bound for Cy3.5 and Cy3 labels, respectively, as a

function of the number of spectral channels for two different data models. From the figure we
see that for both the Poisson and the Poisson + Gaussian data models the LUP bound improves
by increasing the number of channels. This is consistent with Corollary 2.2, where we showed
that the Fisher information matrix for an output image cube pertaining to an Nch + 1 channel
hyperspectral system is greater than or equal to that of the Fisher information matrix for an
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Fig. 5. Effect of channel addition on the LUP bound. Panels A and B show the normalized
excitation (red lines) and emission (blue lines) spectra for Cy3.5 and Cy3 fluorescent labels,
respectively, along with the spectral emissivity of a metal hallide light source (black dotted
line). The panels also show the excitation passband and the emission passbands pertaining
to the different spectral channels. Panel C shows the behavior of the LUP bound for Cy3.5 at
a single pixel as a function of the number of channels after channel addition for different
data models. Panel D shows the same for Cy3. In Panels C and D, the expected photon
count is set to be 3000 for both labels, and the numerical values of the mean and standard
deviation of the Gaussian noise component are identical to those used in Fig. 4.

Nch channel hyperspectral imaging system. Note that for both labels, the LUP bound for the
Poisson + Gaussian data model is consistently higher than that of the Poisson data model, which
is consistent with the behavior that we observed in Fig. 4. We also observe that the addition of
spectral channels beyond a certain wavelength range is not beneficial as we see that the LUP
bound starts to plateau out.

4.5. Channel splitting

In the previous section we investigated how the addition of spectral channels impacts the LUP
bound for a given label. In many situations, the addition of spectral channels is not feasible. More
specifically the emission passband for a given fluorescent label is typically fixed. In such cases a
question arises as to whether splitting the available passband into narrower spectral channels
will render any benefit. Here we investigate this question for Cy3 and Cy3.5 labels. For each
fluorescent label, we consider a partitioning scheme wherein we begin with a single emission
passband and then partition the passband into 2, 4, 8, 13, 20 and 40 smaller bands. For example,
for Cy3.5 we start with the emission passband of 590 nm - 630 nm (see Fig. 4), which we split
into two narrower channels, i.e. 590 nm - 610 nm and 610 nm - 630 nm, then into 4 narrower
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channels, i.e. 590 nm - 600 nm, 600 nm - 610 nm, 610 nm - 620 nm and 620 nm - 630 nm, and
so on. A similar partitioning scheme is also adopted for Cy3 where we start with the emission
passband of 560 - 600 nm.
We consider an imaging configuration where the labels are sequentially excited at a specific

excitation passband followed by simultaneous detection of the emitted photons across the different
spectral channels for that label. Unlike the imaging configuration that we considered in Section
4.4, here the total number of photons collected from a given label remains the same as we
increase the number of partitioned channels. We note that the above imaging configuration can
be realized in a spectral confocal microscope or in a hyperspectral line scanning microscope
that is equipped with a dispersive optical element such as a prism or a monochromator, which
spectrally disperses the incident light along a line and the dispersed signal is then captured on a
linear imaging detector.

Fig. 6. The effect of channel splitting on the LUP bound. Panel A shows the behavior of the
LUP bound for Cy3.5 at a single pixel as a function of the number of channels after channel
splitting for the Poisson and the Poisson + Gaussian data models. Panel B shows the same
for Cy3. In Panels A and B, the expected photon count is set to be 3000 for both labels, and
for the Poisson + Gaussian data model we assume the mean of the Gaussian noise to be 0
e−/pixel and different values of standard deviation as indicated in the legend in panel A.

Figures 6(A) and 6(B), show the LUP bound for Cy3.5 and Cy3 labels at a given pixel as a
function of the number of partitioned channels for different data models. For the Poisson data
model we see that channel splitting improves the LUP bound for both labels. Specifically, the
LUP bound decreases with increasing number of channels after partitioning. This is consistent
with Corollary 2.3, where we showed that for the Poisson data model the Fisher information
matrix for a hyperspectral imaging system with Nch + 1 partitioned channels is greater than that
with Nch partitioned channels.

Figures 6(A) and 6(B) also show the LUP bound for the Poisson + Gaussian data model for
different readout noise levels. Here we assume that the readout noise remains the same as the
number of partitioned channels increases. Unlike the Poisson data model, we see that the LUP
bound first improves but then progressively deteriorates with increasing number of partitioned
channels. Specifically, when the number of channels initially increases, this provides additional
spectral information which in turn results in an improvement of the LUP bound. However, as
the number of partitioned channels increases, the passband for each spectral channel becomes
narrower and in turn the expected photon count per spectral channel decreases while the readout
noise remains the same.

Note that the extent of this deterioration is proportional to the standard deviation of the readout
noise. For example for Cy3.5 label, if the standard deviation of the readout noise is 8 e− /pixel,
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then the LUP bound varies from 160 photons to 210 photons when the number of channels after
partitioning increases from 2 to 20. On the other hand, if the standard deviation of the readout
noise is 2 e−/pixel, then the LUP bound varies from 149 photons to 152 photons when the number
of channels after partitioning increases from 2 to 20. We note that a similar result has been
reported for the localization accuracy problem in fluorescence microscopy, where the limit of the
accuracy of the X/Y location coordinate also shows an analogous behavior as a function of pixel
size of the imaging detector for the Poisson and the Poisson + Gaussian data models [37].

5. Assessment of spectral unmixing algorithms

In the previous sections we investigated the behavior of the linear unmixing performance bound
for different experimental configurations and imaging conditions. A fundamental question
remains whether there exists an unbiased estimator than will attain the performance bound. To
address this question, we consider two algorithms for spectral unmixing namely the least squares
(LS) estimator and the maximum likelihood (ML) estimator, and evaluate their performance on
simulated hyperspectral imaging data. Here we use the unconstrained least squares estimator
which does not impose any non-negativity constraint on the estimated result. Recall from Theorem
2.2 that the block diagonality of the Fisher information matrix implies that the accuracy with
which the photon counts are estimated at the kth pixel in the output image cube is independent
of the accuracy of photon count estimates at the mth pixel when k , m. Hence for the current
discussion it is sufficient to evaluate the performance of the spectral unmixing algorithms for
hyperspectral data simulated at a single pixel. For k = 1, . . . , Np, let zk := [z1

k
z2
k
. . . zNch

k
]T ,

denote the detected photon counts at the kth pixel block in the input image cube. The LS estimator
of θk can be written as

θ̂k(LS) := (AT A)−1 AT zk, k = 1, . . . , Np,

where A denotes the mixing matrix. The ML estimator can be written as

θ̂k(ML) = max
θ∈Θ

©«
Nch∑
j=1

ln(pj
θ,k
(z j

k
))
ª®¬ , k = 1, . . . , Np,

where pj
θ,k

denotes the probability density function of the photon counts detected at the k th pixel
in the j th spectral channel, for j = 1, . . . , Nch and k = 1, . . . , Np .

From the definition it is straightforward to see that for the Poisson data model (Eq. (3)) the LS
estimator is unbiased, since

E[θ̂k(LS)] = (AT A)−1 AT E[zk] = (AT A)−1 AT νθ,k

= (AT A)−1(AT A)θk = θk, θ ∈ Θ, k = 1, . . . , Np,

where we have used Eq. (8). However, if the hyperspectral data follows either the Gaussian data
model (Eq. (2)) or the Poisson + Gaussian data model (Eq. (4)), then we have

E[θ̂k(LS)] = (AT A)−1 AT E[zk] = (AT A)−1 AT (νθ,k + ηk)

= (AT A)−1(AT (Aθk + ηk) = θk + (AT A)−1 ATηk,

where ηk := [η1
k
η2
k
. . . ηNch

k
]T denotes the mean of the additive Gaussian noise at the k th pixel

block for k = 1, . . . , Np . From the above equation we see that the LS estimator will be unbiased
only when the mean of the Gaussian noise component η j

k
is equal to zero for j = 1, . . . , Nch and

k = 1, . . . , Np .
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Fig. 7. Performance of spectral unmixing algorithms on hyperspectral data. The figure shows
the behavior of the LS and ML estimators on simulated hyperspectral data. Panels A and B
show the % of relative error of the estimators for Cy3.5 and Cy3 labels, respectively, for
different expected photon counts. For both algorithms, we do not impose any non-negativity
constraint for the photon counts during estimation. Here we assume that the expected photon
count is the same for both fluorescence labels. Panels C and D show the bias of the estimators
for Cy3.5 amd Cy3, respectively, for different expected photon counts.

We consider the hyperspectral imaging configuration illustrated in Fig. 5 where the fluorescent
labels Cy3 and Cy3.5 are sequentially excited and their fluorescence signal is detected across 6
distinct spectral channels. We assume that the expected photon count for each label is the same
and simulate the hyperspectral data as described in Section 3.2. For each value of expected photon
count, we create 10,000 realizations of the data and estimate the photon counts associated with
each fluorescent label by using the different spectral unmixing algorithms. For the ML estimator,
the starting value of the photon count estimate was obtained by applying the LS estimator to the
data and no non-negativity constraint was imposed on both estimators. To assess the performance
of the unmixing algorithms, we calculate the bias and the relative error which are given by

Bias for j th label = mean(θ̂ j) − θ j,

% of relative error for j th label = 100 ×

std(θ̂ j )
mean(θ̂ j ) −

δ j
θ j

δ j
θ j

,

where j = 1, 2 and δj denotes the LUP bound of θ j (see Definition 4.2).
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Figure 7 shows the performance of the LS and ML estimators for the hyperspectral data
generated for different values of the expected photon counts. From the figure, we see that the
performance of LS and ML estimators are relative close to the nLUP bound in that the % of
relative error for both labels are within 8% of their corresponding nLUP bounds. Note that
the performance of the ML estimator is consistently better than that of the LS estimator for a
range of expected photon count values, since the % of relative error for the ML estimator is
lower than that for the LS estimator. This is expected since we used the Poisson + Gaussian data
model to simulate the hyperspectral data and used the appropriate probability density function to
estimate the photon counts in the ML estimator. The figure also shows the bias for the LS and
ML estimators. By definition the LS estimator is unbiased and consistent with this we see that
the bias estimates of the LS estimator for both labels are equally distributed between positive and
negative values. In particular, the magnitude of the bias estimate is within ± 1 photon from the
true value of the photon count. An almost identical behavior is observed for the ML estimator
which suggests that the ML estimator is also unbiased for the imaging conditions tested here.

6. Conclusion

Ageneral stochasticmodel for hyperspectral imaging datawas presented and analytical expressions
for the Fisher information matrix was derived. The model is based on relatively broad assumptions
about the underlying probability density function that describes the hyperspectral data and allows
for a wide variety of imaging conditions. As an application, we considered the linear mixing
model and showed that the Fisher information matrix becomes block diagonal. Using the
Cramer-Rao inequality, we introduced a linear unmixing performance bound and showed how this
can be used to predict the spectral resolution limit for two spectrally overlapping fluorescent labels.
We also showed how the spectral resolution limit can be surpassed in a standard microscope
configuration by using the phenomenon of anti-Stokes shift fluorescence. Further, we investigated
the effects of channel addition and channel splitting on the behavior of the performance bound
and illustrated them through concrete examples. Finally, we evaluated the performance of the
least squares and maximum likelihood estimators for spectral unmixing, and studied their bias
and variance behaviors at different photon/light budgets. In conclusion we note that the results
and analysis presented here extend prior studies by providing a comprehensive framework to
analyze the performance limits of a wide variety of hyperspectral imaging systems and spectral
unmixing algorithms. Moreover, the information-theoretic analysis presented here has wider
implications, for example, in D-optimum experimental design [38] and variational inference
problems that make use of the Fisher information matrix [39].
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